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Abstract
We study a system of N-bosons in the plane interacting with delta function
potentials. After a coupling constant renormalization we show that the
Hamiltonian defines a self-adjoint operator and obtain a lower bound for the
energy. The same results hold if one includes a regular inter-particle potential.

PACS numbers: 03.65.Db, 03.65.Ge

1. Introduction

We consider N -bosons of mass m in R
2 interacting with delta function potentials of strength

g. The Hamiltonian for the system is

H =
N∑

i=1

−�

2m
−

∑
1�i<j�N

gδ(xi − xj ) (1)

defined on HN = the N-fold symmetric tensor product of L2(R2) with itself. The problem
is to make sense of this as a self-adjoint operator. This is necessary in order that the global
dynamics ψt = e−iHtψ0 be well defined. However, the expression is quite singular and one
finds that the coupling constant g must be renormalized to have a chance of success.

The problem is fairly well understood for N = 2. We give a treatment below which
involves introducing a momentum cutoff, choosing a cutoff-dependent coupling constant and
then showing that as the cutoff is removed the Hamiltonians have a self-adjoint limit in the
sense of resolvent convergence.

The N = 2 problem has also been considered by Albeverio et al [1]. They take a different
approach which involves specifying boundary conditions when the points coincide. We show
that our results are equivalent to theirs.

Our main interest is in general N and the challenge is to incorporate the wisdom gained for
the two-particle case into the multi-particle setting. Our solution involves introducing fictitious
particles known as angels which serve as markers for two-particle subsystems. This approach
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was developed by one of us in the papers [2, 3]. The present paper is a rigorous version of
this work. The main result is a proof that for any N the cutoff-renormalized operators have a
self-adjoint limit in the sense of resolvent convergence. We also obtain a lower bound for the
Hamiltonian.

This problem was previously considered by Dell’Antonio et al [4]3. Our results are very
similar to theirs; however the proofs are rather different. They use a concept of �-convergence
rather than resolvent convergence. Also their ‘bare coupling constant’ depends on N and
momentum as well as the cutoff, whereas ours depends only on the cutoff.

The present work seems to have some advantages in simplicity and flexibility compared
to [4]. As evidence of this we obtain the new result that essentially the same conclusions hold
if we include a regular inter-particle potential in addition to the delta function.

2. Two particles

2.1. Point interaction

We begin with a discussion of the case N = 2. Taking mass m = 1 and passing to centre of
mass coordinates we have the Hamiltonian

H = −� − gδ (2)

on the space L2(R2). In momentum space

(Hψ)(p) = p2ψ(p) − g

(2π)2

∫
ψ(q) dq. (3)

This operator does not map into L2(R2) and cannot determine a dynamics as such.
Instead we consider approximate Hamiltonians

(H�ψ)(p) = p2ψ(p) − g�

(2π)2
ρ�(p)

∫
ρ�(q)ψ(q) dq (4)

where ρ� is the characteristic function of |p| � �. We define

Pf ψ = f (f,ψ). (5)

(If ‖f ‖ = 1 this is the projection onto f .) Then we can write with H0 = p2

H� = H0 − g�

(2π)2
Pρ�

. (6)

This is a bounded perturbation of the self-adjoint operator H0 and so is self-adjoint on D(H0)

(Kato’s theorem [6]). We define the resolvents

R0(E) = (H0 − E)−1 R�(E) = (H� − E)−1 (7)

when they exist. If they exist as bounded operators one says that E is in the resolvent set of
the operator. The resolvent set for H0 is C − [0,∞). Since the perturbation is rank one the
resolvent R�(E) can be explicitly calculated. For E ∈ C − [0,∞) one finds that E is in the
resolvent set for H� − E if and only if

(2π)2g−1
� �= (ρ�,R0(E)ρ�) (8)

in which case

R�(E) = R0(E) +

(
1

(2π)2g−1
� − (ρ�,R0(E)ρ�)

)
PR0(E)ρ�

. (9)

3 They also consider the three-dimensional case. See also the early work of Flammand [5].
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Indeed if (8) holds then an explicit calculation shows that the right-hand side provides a
bounded inverse for H� − E. On the other hand, if (2π)2g−1

� = (ρ�,R0(E)ρ�) then

(H� − E)R0(E)ρ� =
(

1 − g�

(2π)2
(ρ�,R0(E)ρ�)

)
ρ� = 0 (10)

and R0(E)ρ� �= 0 so E is an eigenvalue of H� − E and not in the resolvent set.
Now we introduce a new parameter µ > 0 and make the choice

g� = g�(µ) = (2π)2

(∫
|p|��

(p2 + µ2)−1 dp

)−1

. (11)

Thus g� goes to zero logarithmically as � → ∞. Then we can write

R�(E) = R0(E) + ξ�(µ2,−E)−1PR0(E)ρ�
(12)

where

ξ�(a, b) ≡
∫

|p|��

(p2 + a)−1 dp −
∫

|p|��

(p2 + b)−1 dp. (13)

For a, b > 0 we have

ξ�(a, b) ≡ π log

(
�2

a
+ 1

)
− π log

(
�2

b
+ 1

)

= π log

(
1

a
+

1

�2

)
− π log

(
1

b
+

1

�2

)
. (14)

In the last step we have cancelled the divergence in each term by adding and subtracting
π log �2. Now it is a simple matter to take the limit � → ∞ and get

ξ(a, b) = π log(b/a). (15)

Theorem 1.

1. For E real and not in {−µ2} ∪ [0,∞) the strong limit R(E) = lim�→∞ R�(E) exists and
is given by

R(E) = R0(E) + ξ(µ2,−E)−1P	E
(16)

where 	E ∈ L2(R2) is defined by

	E(p) = (p2 − E)−1. (17)

2. R(E) is invertible
3. For E complex and not in {−µ2}∪ [0,∞) the limit R(E) = lim�→∞ R�(E) exists. There

is a self-adjoint operator H(µ) such that R(E) = (H(µ) − E)−1.

Proof.

1. Under our hypotheses ξ(µ2,−E) = π log(−E/µ2) �= 0. Hence ξ�(−E,µ2) �= 0 for �

sufficiently large and ξ(µ2,−E)−1 = lim�→∞ ξ�(µ2,−E)−1. We also have in L2(R2)

the limit 	E = lim�→∞ R0(E)ρ�. The result follows.
2. To show the null space of R(E) is {0} it is sufficient to find a dense set D ⊂ D(H�) such

that for η ∈ D we have the existence of η∗ = lim�→∞(H� −E)η. For then if R(E)ψ = 0
we have

(η, ψ) = lim
�→∞

((H� − E)η,R�(E)ψ) = (η∗, R(E)ψ) = 0 (18)

for all η ∈ D and hence ψ = 0.
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For our domain D we pick u ∈ S(R2) so the the Fourier transform û is in C∞
0 (R2 −{0}).

For u in this domain we have

(H�u)(p) = p2u(p) − g�

(2π)2
ρ�(p)

∫
ρ�(q)u(q) dq. (19)

We argue that the second term converges to zero so that H�u → H0u. Since g� → 0
and ‖ρ�‖ = √

π� it suffices that
∫

ρ�(q)u(q) dq = O(�−1).
To see this first replace ρ�(q) = ρ1(q/�) by ρ∗

�(q) = ρ∗(q/�) where ρ∗ is smooth
approximation to the characteristic function of the unit disc. The difference is O(�−n)

for any n, and so it suffices to show
∫

ρ∗
�(q)u(q) dq = O(�−1).

Since û ∈ C∞
0 (R2−{0}) we have v̂(x) = |x|−2û(x) in the same space and so u = −�qv

for some v ∈ S(R2). Then after integrating by parts∫
ρ∗

�(q)u(q) dq =
∫

(−�qρ
∗
�)(q)v(q) dq. (20)

This is O(�−2) since |�qρ
∗
�(q)| is O(�−2) and v(q) is rapidly decreasing.

3. This follows from the first two parts and a version of the Trotter–Kato theorem quoted in
the appendix. �

Remarks.

1. The resolvent has a simple pole at E = −µ2 so H(µ) has the eigenvalue −µ2. The residue
is the projection onto the eigenspace which we see is spanned by 	−µ2(p) = (p2 +µ2)−1.
This is a bound state.

2. Our approach to this problem follows a path well known to physicists. The problem
is usually cited as an example of dimensional transmutation in which a model without
a length scale (the coupling constant g is dimensionless) upon renormalization gains a
length scale (namely µ−1) [7]. This phenomenon is expected to occur in gauge theories
in four dimensions.

3. Let us compare our result with the result of Albeverio et al [1]. They consider −�

on L2(R2\{0}) and obtain all possible self-adjoint extensions by imposing boundary
conditions at the origin. The self-adjoint extensions are indexed by a parameter α taking
all real values. They also have an explicit formula for the resolvent (a Krein formula)
which is just like our equation (16) except that instead of ξ(µ2,−E) = π log(−E/µ2)

they have the function (p 99, equation (5.16))

4π2α − 2π�(1) + π log(−E/4). (21)

Comparing, we see that they agree exactly if the parameters are related by

log µ = −2πα + �(1) + log 2. (22)

2.2. Extension

The previous results can be generalized to allow an additional potential besides the delta
function. We consider

H # = −� + v − gδ. (23)

For simplicity we will assume v is a bounded function on R
2. To define this we again start

with approximate Hamiltonians in momentum space

H #
� = H0 + v′ − (2π)−2g�Pρ�

(24)
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where g� = g�(µ) is as before and v′ = FvF−1 is a convolution operator (F = Fourier
transform). Since ‖v′‖ = ‖v‖ = ‖v‖∞ this is still a bounded perturbation and so H #

� is
self-adjoint on D(H0). Without the approximate delta function we have

H1 = H0 + v′ (25)

which is also self-adjoint on D(H0) and satisfies and H1 � −‖v‖∞.
Resolvents are denoted by

R1(E) = (H1 − E)−1 R#
�(E) = (

H #
� − E

)−1
. (26)

If E is complex and not in [−‖v‖∞,∞) then E is in the resolvent set for H1. As before we
find that such E are also in the resolvent set for H #

� if and only if (2π)2g−1
� �= (ρ�,R1(E)ρ�)

in which case

R#
�(E) = R1(E) +

(
1

(2π)2g−1
� − (ρ�,R1(E)ρ�)

)
PR1(E)ρ�

. (27)

Theorem 2.

1. For real E < −e0 with

e0 = max(‖v‖∞ + 1, µ2 e‖v‖∞+1) (28)

the strong limit R#(E) = lim�→∞ R#
�(E) exists.

2. R#(E) is invertible.
3. R#(E) = lim�→∞ R#

�(E) exists for all complex E not in [−e0,∞). There is a self-adjoint
operator H #(µ) satisfying H #(µ) � −e0 such that

R#(E) = (H #(µ) − E)−1. (29)

Proof. In the denominator in (27) we insert

R1(E) = R0(E) − R1(E)v′R0(E) (30)

and find

R#
�(E) = R1(E) +

(
1

ξ�(µ2,−E) + (ρ�,R1(E)v′R0(E)ρ�)

)
PR1(E)ρ�

. (31)

As � → ∞ we have in L2(R2)

lim
�→∞

R1(E)ρ� = lim
�→∞

R0(E)ρ� − R1(E)v′R0(E)ρ�

= 	E − R1(E)v′	E

≡ 	1,E. (32)

Thus we have the limit R#(E) = lim�→∞ R#
�(E) given by

R#(E) = R1(E) +

(
1

ξ(µ2,−E) + (	E, v′	E) − (	E, v′R1(E)v′	E)

)
P	1,E

(33)

provided the denominator does not vanish. However ‖	E‖2
2 = π |E|−1 and since E <

−‖v‖∞ − 1 we have ‖R1(E)‖ � 1 and hence

|(	E, v′	E)| � π |E|−1‖v‖∞ � π

|(	E, v′R1(E)v′	E)| � π |E|−1‖v‖2
∞ � π‖v‖∞.

(34)

Thus we can avoid vanishing provided ξ(µ2,−E) > π(‖v‖∞ + 1) or log(−E/µ2) >

‖v‖∞ + 1. This is our condition −E > µ2 e‖v‖∞+1.
Thus part one is proved. The second and third parts follow as in the previous

theorem. �
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3. Many particles

3.1. Bosons

We now turn to the many-particle problem. It is convenient to work with all possible values
of N at the same time, even though the main interest is at fixed N. This means we are working
on the Fock space H = ⊕∞

N=0HN . This has the usual creation and annihilation operators
a∗(f ), a(f ) defined for f ∈ L2(R2). We also have a(p) = a(δ(·−p)) defined on the domain
D which is the dense subspace of H with only a finite number of entries and wavefunctions in
the Schwartz space S(R2). For ψ ∈ D the function p → a(p)ψ is rapidly decreasing. (Note
that a∗(p) = a∗(δ(· − p)) is not an operator.)

The Hamiltonian has the form H = H0 + HI . The free Hamiltonian H0 is
∑N

i=1 p2
i

/
2 on

the HN and is essentially self-adjoint on D∩HN . It can also be represented as a bilinear form
on D × D as4

H0 =
∫

ω(p)a∗(p)a(p) dp ω(p) = p2

2
. (35)

The interaction with inter-particle potential −gδ(x − y) is given in momentum space by the
bilinear form on D × D:

HI = −g

2(2π)2

∫
a∗(p′

1)a
∗(p′

2)δ(p1 + p2 − p′
1 − p′

2)a(p1)a(p2) dp1 dp2 dp′
1 dp′

2. (36)

However, this is not an operator.
To remedy this we introduce

H� = H0 + HI,�. (37)

For HI,� we add momentum cutoffs ρ�, take the coupling constant g� = g�(µ) as before and
define

HI,� = −g�

2(2π)2

∫
ρ�

(
p1 − p2

2

)
ρ�

(
p′

1 − p′
2

2

)
× a∗(p′

1)a
∗(p′

2)δ(p1 + p2 − p′
1 − p′

2)a(p1)a(p2) dp1 dp2 dp′
1 dp′

2. (38)

Changing variables to

p = p1 + p2 q = p1 − p2

2
(39)

we find for the associated quadratic form

(ψ,HI,�ψ) = −g�

2(2π)2

∫
ρ�(q)ρ�(q ′)

(
a

(p

2
+ q ′

)
a

(p

2
− q ′

)
×ψ, a

(p

2
+ q

)
a

(p

2
− q

)
ψ

)
dp dq dq ′. (40)

Applying the Schwarz inequality first in Fock space and then in the integral we find

|(ψ,HI,�ψ)| � g�

2(2π)2

(∫
ρ�(q)2 dq

) ∫ ∥∥∥a
(p

2
+ q

)
a

(p

2
− q

)
ψ

∥∥∥2
dp dq

= g�

2(2π)2
‖ρ�‖2

2

∫
‖a(p1)a(p2)ψ‖2 dp1 dp2

= g�

2(2π)2
‖ρ�‖2

2

∥∥N
1/2
0 (N0 − 1)1/2ψ

∥∥2
. (41)

Here N0 = ∫
a∗(p)a(p) dp is the number operator.

4 This means (φ, H0ψ) = ∫
ω(p)(a(p)φ, a(p)ψ) dp or as a quadratic form (ψ, H0ψ) = ∫

ω(p)‖a(p)ψ‖2 dp.
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On the N-particle subspace HN we have N0 = N and hence HI,� is a bounded quadratic
form. This determines a bounded self-adjoint operator on each HN and hence H� defines a
self-adjoint operator on each HN with domain D(H0) ∩ HN . Taking the direct sum we get a
self-adjoint operator H� on the full Fock space.

3.2. Angels

Next we introduce angels. We define

H̃ = L2(R2) ⊗ H (42)

which is Fock space with an angel. For f ∈ L2(R2) we define χ(f ) : H̃ → H and
χ∗(f ) : H → H̃ by

χ(f )(h ⊗ ψ) = (f, h)ψ χ∗(f )ψ = f ⊗ ψ. (43)

These are creation and annihilation operators for angels, are adjoint to each other and satisfy

χ(f )χ∗(h) = (f, h) χ∗(h)χ(f ) = h(f, ·) ⊗ I. (44)

There is also the operator χ(p) = χ(δ(· − p)) defined say on the dense subspace D̃ ⊂ H̃
defined by D̃ ≡ S(R2) ⊗ D.

An equivalent representation is

H̃ = L2(R2,H). (45)

Then D̃ is a subspace of S(R2,D) and on this domain

χ(p)� = �(p). (46)

Next we introduce

Definition 1.

B� = 1√
2(2π)

∫
ρ�

(
p1 − p2

2

)
χ∗(p1 + p2)a(p1)a(p2) dp1 dp2. (47)

Then B� is an operator from H to H̃, and the key point is that it provides a square root
for HI,�.

Lemma 1. For � < ∞
1. B� defines a bounded operator on each subspace HN .
2. For ψ ∈ D we have in the representation (45)

(B�ψ)(p) = 1√
2(2π)

∫
ρ�(q)a

(p

2
+ q

)
a

(p

2
− q

)
ψ dq. (48)

3. On each HN

−g�B∗
�B� = HI,�. (49)

Proof. The expression is naturally defined as a bilinear form. For ψ ∈ D and � ∈ D̃ we have
in the representation (45)

(�,B�ψ) = 1√
2(2π)

∫
ρ�

(
p1 − p2

2

)
(�(p1 + p2), a(p1)a(p2)ψ) dp1 dp2. (50)
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Applying the Schwarz inequality twice we have

|(�,B�ψ)| �
(∫ ∣∣∣∣ρ�

(
p1 − p2

2

)∣∣∣∣
2

‖�(p1 + p2)‖2 dp1 dp2

)1/2

×
(∫

‖a(p1)a(p2)ψ‖2 dp1 dp2

)1/2

� ‖ρ�‖2‖�‖‖N0ψ‖. (51)

Now specialize to ψ ∈ HN and we see that B� is a bounded bilinear form and hence a bounded
operator. This establishes the first point.

Next change variables in (50) and obtain

(�,B�ψ) = 1√
2(2π)

∫
ρ�(q)

(
�(p), a

(p

2
+ q

)
a

(p

2
− q

)
ψ

)
dp dq. (52)

which establishes (48).
For (49) it suffices to establish the identity as a quadratic form on D. Inserting the

representation of (48) into −g�‖B�ψ‖2 we obtain the representation (40) of (ψ,HI,�ψ).
This completes the proof. �

For later reference we consider the case � = ∞ with the operator

B = 1√
2(2π)

∫
χ∗(p1 + p2)a(p1)a(p2) dp1 dp2. (53)

Lemma 2. B defines an (unbounded) operator on HN ∩ D(H0) which satisfies for some
constant C:

‖Bψ‖ � C‖(H0 + N)ψ‖. (54)

For ψ in this domain

lim
�→∞

B�ψ = Bψ. (55)

Proof. All the above representations still hold for ψ ∈ D, � ∈ D̃. But now instead of (51)
we have

|(�,Bψ)| �
(∫

(ω(p1) + 1)−1(ω(p2) + 1)−1‖�(p1 + p2)‖2 dp1 dp2

)1/2

×
(∫

(ω(p1) + 1)(ω(p2) + 1)‖a(p1)a(p2)ψ‖2 dp1 dp2

)1/2

�
(∫ (

ω
(p

2
+ q + 1

)−1
(

ω

(
p

2
+ q

)
+ 1

)−1

‖�(p)‖2 dp dq

)1/2

‖(H0 + N0)ψ‖

� C‖�‖‖(H0 + N0)ψ‖. (56)

Here C = ( ∫
(ω(q) + 1)−2 dq

)1/2
and in the last step we use the Schwarz inequality in q. This

shows that B defines an operator on D ∩ HN satisfying inequality (54). Since D ∩ HN is a
core for H0 on HN we can extend the domain to D(H0) ∩ HN .

For the second point we estimate |(�, (B − B�)ψ)| as above. In the last integral over q
we are now restricting to |q| � �. Break this into two terms using

{q : |q| � �} ⊂
{
q :

∣∣∣p
2

+ q

∣∣∣ � �

2

}
∪

{
q :

∣∣∣p
2

− q

∣∣∣ � �

2

}
. (57)
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With δC� = ( ∫
q��

(ω(q) + 1)−2 dq
)1/2

and ψ ∈ D ∩ HN this leads

|(�, (B� − B)ψ)| �
√

2δ C�C‖�‖‖(H0 + N)ψ‖. (58)

This estimate extends to ψ ∈ D(H0) ∩ HN . Then as � → 0 we have δC� → 0 and
‖(B� − B)ψ‖ → 0. �

3.3. Resolvents

We return to � < ∞ and work out some consequences of the identity (49) for resolvents. We
define

R0(E) = (H0 − E)−1 R�(E) = (H� − E)−1. (59)

These exist for ImE �= 0 and R0(E) exists for E < 0. We want to find real E such that R�(E)

exists as a means to isolate the spectrum of H�.
To this end we also introduce the operators on H ⊕ H̃

H̃�(E) =
(

H0 − E B∗
�

B� g−1
�

)
R̃�(E) = H̃�(E)−1. (60)

Since B� is a bounded operator from HN to H̃N−2 we have that H̃�(E) preserves the subspace
HN ⊕ H̃N−2. More precisely it is defined on (D(H0) ∩HN) ⊕ H̃N−2 and is self-adjoint there.

Lemma 3. For E < 0, R�(E) exists in B(HN) iff R̃�(E) exists in B(HN ⊕ H̃N−2) in which
case

R̃�(E) =
(

R�(E) −g�R�(E)B∗
�

−g�B�R�(E) g� + g2
�B�R�(E)B∗

�

)
. (61)

Proof. We omit the subscript � for the proof. First assume that R̃(E) exists. Then it is
self-adjoint and has the form

R̃(E) =
(

α β∗

β δ

)
(62)

for bounded α, β, δ and α, δ self-adjoint. The statement that is the inverse says that α, β∗ map
into the domain of H0 and that

(H0 − E)α + B∗β = I (H0 − E)β∗ + B∗δ = 0

Bα + g−1β = O Bβ∗ + g−1δ = I.
(63)

We ignore the second equation. The third equation says

β = −gBα β∗ = −gαB∗. (64)

Inserting the expression for β into the first equation and using −gB∗B = HI we get
(H − E)α = I . Hence R(E) exists and equals α. Inserting the expression for β∗ into
the last equation gives δ = g + g2gBR(E)B∗

On the other hand, if R(E) exists one can check directly that (61) provides a bounded
inverse. This completes the proof. �

Now we give another version.

Definition 2. For E < 0 define a bounded operator on each H̃N by

��(E) = g−1
� − B�R0(E)B∗

�. (65)
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Lemma 4. For E < 0, R̃�(E) exists in B(HN ⊕ H̃N−2) iff ��(E)−1 exists in B(H̃N−2) in
which case

R̃�(E) =
(

R0(E) + R0(E)B∗
���(E)−1B�R0(E) −R0(E)B∗

���(E)−1

−��(E)−1B�R0(E) ��(E)−1

)
. (66)

Proof. Again suppose that R̃(E) exists so we must solve equations (63) again. This time we
ignore the third equation. Then the second equation says that

β∗ = −R0(E)B∗δ β = −δBR0(E). (67)

Substituting β∗ into the fourth equation gives (−BR0(E)B∗ + g−1)δ = I or �(E)δ = I .
Hence �(E)−1 exists and equals δ. Substituting β into the first equation gives (H0 − E)α −
B∗�(E)−1BR0(E) = I whence α = R0(E) + R0(E)B∗�(E)−1BR0(E).

On the other hand, if �(E)−1 exists one can check directly that (66) provides a bounded
inverse. This completes the proof. �

Comparing these results we have

Lemma 5. For E < 0, R�(E) exists in B(HN) iff ��(E)−1 exists in B(H̃N−2) in which case

R�(E) = R0(E) + R0(E)B∗
���(E)−1B�R0(E)

��(E)−1 = g� + g2
�B�R�(E)B∗

�.
(68)

3.4. Renormalization

In view of the last result we can study the resolvent R�(E) on HN by studying the operator
��(E) on H̃N−2. The advantage of this operator is that it can be more easily renormalized.

First we Wick-order moving creation operators to the left and annihilation operators to
the right using [a(p), a∗(p′)] = δ(p − p′) and

(H0 − E)−1a∗(p) = a∗(p)(H0 + ω(p) − E)−1. (69)

The resulting identity is formal but a rigorous version can be had by regularizing a(p) →
a(δκ(· − p)) with approximate delta functions δκ . We find

��(E) = �0,�(E) + �I,�(E) (70)

where

�0,�(E) = g−1
� − 1

2(2π)2

∫
dp1 dp2 χ∗(p1 + p2)χ(p1 + p2)

× ρ�

(
p1 − p2

2

)2 2

H0 + ω1 + ω2 − E

�I,�(E) = − 1

2(2π)2

∫
dp1 dp2 dp′

1 dp′
2 χ∗(p1 + p2)χ(p′

1 + p′
2)ρ�

(
p1 − p2

2

)
(71)

× ρ�

(
p′

1 − p′
2

2

) (
a∗(p′

1)a
∗(p′

2)
1

H0 + ω1 + ω2 + ω′
1 + ω′

2 − E
a(p1)a(p2)

+ δ(p1 − p′
1)a

∗(p′
2)

4

H0 + ω1 + ω2 + ω′
2 − E

a(p2)

)
.

Here ω1 = ω(p1) = p2
1

/
2, etc. These are bilinear forms on D̃ × D̃. By the methods of

section 3.2 they determine bounded operators on each H̃N for � < ∞. But now we want to
work uniformly in � and also include � = ∞.
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To cancel the divergence in �0,�(E) we change variables and write

�0,�(E) = (2π)−2

(∫
|q|��

(q2 + µ2)−1 −
∫

|q|��

dp dq χ∗(p)χ(p)
1

H0 + p2/4 + q2 − E

)
.

(72)

In the representation H̃ = L2(R2, H̃) this is5

(�0,�(E)�)(p) = (2π)−2

(∫
|q|��

(q2 + µ2)−1 −
∫

|q|��

dq
1

H0 + p2/4 + q2 − E

)
�(p)

= (2π)−2ξ�(µ2,H0 + p2/4 − E)�(p). (73)

As noted in (14), ξ� has no divergence and we can define for � = ∞:

(�0(E)�)(p) = (2π)−2ξ(µ2,H0 + p2/4 − E)�(p)

= (4π)−1 log

(
H0 + p2/4 − E

µ2

)
�(p).

(74)

Lemma 6. For E < −µ2, �0(E) is essentially self-adjoint on D̃ ∩ H̃N and for � in this
domain we have

lim
�→∞

�0,�(E)� = �0(E)�. (75)

Proof. For the essential self-adjointness it suffices to show that the domain contains a dense
set of analytic vectors (Nelson’s theorem, [8]). For analytic vectors we can take wavefunctions
with compact support.

The convergence is straightforward. One can use the inequality∥∥∥∥
(

log

(
H0 + p2/4 − E +

1

�2

)
− log(H0 + p2/4 − E)

)
�(p)

∥∥∥∥
� �−2‖(H0 + p2/4 − E)−1�(p)‖ � O(�−2)‖�(p)‖ (76)

which follows using the spectral theorem. �

Next, we work on �I,�(E). For � = ∞ it is defined without the ρ� and denoted by
�I(E).

Lemma 7. For E < −1 and � � ∞ and � ∈ D̃:

|(�,�I,�(E)�)| � 2
(
�,N2

0 �
)
. (77)

Thus �I,�(E),�I (E) define bounded operators on H̃N and for � ∈ D̃ ∩ H̃N :

lim
�→∞

�I,�(E)� = �I(E)�. (78)

Proof. We take �I,�(E) = �
(2)
I,�(E) + �

(4)
I,�(E) where the superscript indicates the number

of creation and annihilation operators. For the first we have∣∣(�,�
(2)
I,�(E)�)

∣∣ � 1

2π2

∫
dp1 dp2 dp′

2

×
∣∣∣∣
(

a(p′
2)�(p1 + p2),

1

H0 + ω1 + ω2 + ω′
2 − E

a(p2)�(p1 + p′
2)

)∣∣∣∣
5 In general, if T = ∫

χ∗(p)T (p)χ(p) dp defines an operator on H̃ = L2(R2) ⊗ H, then in the representation
H̃ = L2(R2,H) we have (T �)(p) = T (p)�(p).
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� 1

2π2

∫
dp1 dp2 dp′

2‖a(p′
2)�(p1 + p2)‖ 1

ω2 + ω′
2 + 1

‖a(p2)�(p1 + p′
2)‖

� 1

2π2

∫
dp2 dp′

2‖a(p′
2)�‖ 1

ω2 + ω′
2 + 1

‖a(p2)�‖

�
∥∥N

1/2
0 �

∥∥2
. (79)

Here in the last step we use the fact, noted in [4], that for h, h′ ∈ L2(R2) and any c > 0:∣∣∣∣
∫

h(p)
1

p2 + q2 + c
h′(q) dp dq

∣∣∣∣ � π2‖h‖2‖h′‖2. (80)

For the convergence we proceed differently. We use the estimate for ε > 0∣∣∣∣ρ�

(
p1 − p2

2

)
ρ�

(
p′

1 − p′
2

2

)
− 1

∣∣∣∣ � O(�−ε)(ω1 + ω2 + ω′
2 + 1)ε. (81)

Then for �1, �2 ∈ D̃ we have

∣∣(�1,
(
�

(2)
I,�(E) − �

(2)
I (E)

)
�2

)∣∣ � O(�−ε)

∫
dp1 dp2 dp′

2‖a(p′
2)�1(p1 + p2)‖

× 1

(ω1 + ω2 + ω′
2 + 1)1−ε

‖a(p2)�2(p1 + p′
2)‖

� O(�−ε)

∫
dp1 dp2 dp′

2
1

(ω2 + 1)
3
4 −ε/2

‖a(p′
2)�1(p1 + p2)‖

× (ω2 + 1)1/2

(ω′
2 + 1)

3
4 −ε/2

‖a(p2)�2(p1 + p′
2)‖

� O(�−ε)
∥∥N

1
2

0 �1

∥∥∥∥(H0 + N0)
1
2 �2

∥∥ (82)

where the last step follows by the Schwarz inequality. Specializing to D̃ ∩ H̃N the estimate
is uniform in ‖�1‖ = 1 and yields the convergence

∥∥(
�

(2)
I,�(E) − �

(2)
I (E)

)
�2

∥∥ → 0 (in fact
strong convergence holds since we have a uniform bound on the norms).

For the second term we define

f (p′, q ′, p) =
∥∥∥∥a

(
p′

2
+ q ′

)
a

(
p′

2
− q ′

)
�(p)

∥∥∥∥ (83)

and find

(
�,�

(4)
I,�(E)�

)
� 1

8π2

∫
dp1 dp2 dp′

1 dp′
2‖a(p′

1)a(p′
2)�(p1 + p2)‖

× 1

ω1 + ω2 + ω′
1 + ω′

2 + 1
‖a(p1)a(p2)�(p′

1 + p′
2)‖

� 1

8π2

∫
dp dq dp′ dq ′f (p′, q ′, p)

1

q2 + (q ′)2 + 1
f (p, q, p′)

� 1

8

∫
dp dp′‖f (p′, ·, p)‖2‖f (p, ·, p′)‖2

� 1

8
‖f ‖2

2 � 1

8
‖N0�‖2. (84)
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Again we have used (80). This completes the bound, and the convergence follows by an
estimate similar to (82). �

To combine these we have

Lemma 8.

1. For E < −1, �(E) is essentially self-adjoint on D̃ ∩ H̃N and for � in this domain

lim
�→∞

��(E)� = �(E)�. (85)

2. Let E < −eN where

eN = max
(
1, µ2 e16πN2)

. (86)

Then for � sufficiently large or � = ∞ we have that ��(E) is strictly positive and for
� ∈ H̃N

lim
�→∞

��(E)−1� = �(E)−1�. (87)

Proof. �(E) = �0(E) + �I(E) is the sum of a essentially self-adjoint operator and a
bounded operator. The essential self-adjointness again follows by Kato’s theorem. The
convergence follows from our results (75), (78).

For the second part under our assumptions ξ(µ2,−E) = π log(−E/µ2) � 16π2N2.
Then since ξ�(µ2,−E) converges to ξ(µ2,−E) we have for � sufficiently large (depending
on E,µ) ξ�(µ2,−E) � 12π2N2. Since ξ�(a, b) is increasing in b we have for � ∈ D̃ ∩ H̃N

(�,�0,�(E)�) � (2π)−2ξ�(µ2,−E)‖�‖2 � 3N2‖�‖2. (88)

Combining this with the bound |(�,�I,�(E)�)| � 2N2‖�‖2 we have for � sufficiently large
or � = ∞:

(�,��(E)�) � N2‖�‖2. (89)

This gives the positivity and shows that ��(E) has a bounded inverse. Convergence on
the core D̃ ∩ H̃N for �(E) and the uniform bound ‖��(E)−1‖ � N−2 imply the strong
convergence for ��(E)−1 (see for example [6], p 429). �

3.5. Resolvent convergence

Now we can prove the main result (cf Dell’Antonio et al [4] )

Theorem 3.

1. For real E < −eN and ψ ∈ HN the limit R(E)ψ = lim�→∞ R�(E)ψ exists and is
equal to

R(E) = R0(E) + R0(E)B∗�(E)−1BR0(E). (90)

2. R(E) is invertible.
3. For E complex and not in [−eN,∞) the limit R(E)ψ = lim�→∞ R�(E)ψ exists. There

is a self-adjoint operator H(µ) with H(µ) � −eN so R(E) = (H(µ) − E)−1.
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Proof.

1. By lemma 8 if E < −eN and � is sufficiently large then ��(E)−1 exists as a bounded
operator on H̃N−2. By lemma 5 it follows that all such real E are in the resolvent set of
H� on HN and

R�(E) = R0(E) + R0(E)B∗
���(E)−1B�R0(E). (91)

We claim that B�R0(E) converges in norm to BR0(E). By the resolvent identity it
suffices to prove this for any E < 0 and we take E = −N and show B�(H0 + N)−1

converges in norm to B(H0 + N)−1. This follows by (58). Taking adjoints we have that
R0(E)B∗

� converges in norm to R0(E)B∗. We also know by lemma 8 that ��(E)−1

converges strongly to �(E)−1. Combining these results we have that R�(E) converges
strongly to R(E) given by (90).

2. As in the proof of theorem 1 it suffices to find a dense domain of vectors ψ ∈ HN

so that H�ψ converges. In fact we show HI,�ψ → 0 which suffices. We have
HI,�ψ = −g�B∗

�B�ψ . By (51) ‖B∗
�‖ � ‖ρ�‖2N � O(�). Since also g� → 0

suffices to find a dense domain so that ‖B�ψ‖ = O(�−1).
Now HN can be thought of as symmetric functions in L2(R2N). We take the

subspace of functions in S(R2N) which have a Fourier transform in C∞
0 (R2N) with

support disjoint from the hypersurfaces where points coincide. If ψ is in this space
then a(p1)a(p2)ψ ∼ ψ(p1, p2, . . .) is a vector-valued function which has a Fourier
transform in C∞

0 (R2 × R
2) with support disjoint from the diagonal. Then

u(p, q) ≡ 1√
2(2π)

a
(p

2
+ q

)
a

(p

2
− q

)
ψ (92)

has a Fourier transform û(X, x) which is an element of C∞
0 (R2 × (R2 − {0})). Hence

v̂ = |x|−2û is in the same space and if v(p, q) is the inverse Fourier transform then
u = −�qv.

Now we have for any n

(B�ψ)(p) =
∫

ρ�(q)u(p, q) dq

=
∫

ρ∗
�(q)u(p, q) dq + O(�−n)

=
∫

(−�qρ
∗
�(q))v(p, q) dq + O(�−n). (93)

Here we first replace the sharp cutoff ρ� by a smooth cutoff ρ∗
� and then integrate by parts.

Since |�qρ
∗
�(q)| = O(�−2) and since v(p, q) is rapidly decreasing in both variables we

have ‖B�ψ‖ = O(�−2) which suffices.
3. This follows by the Trotter–Kato theorem. �

Remarks.

1. For large N our lower bound is H � −µ2 e16πN2
. The coefficient 16π can be improved

but in any case the N2 behaviour is probably not optimal. Indeed, mean field calculations
[3] suggest that the actual lower bound may be eO(N). The ground state is presumably a
dense clump of particles: a ‘bosonic star’.

2. For further studies of the spectrum one can consider the operator �(E)−1. We note that
for E < 0 if one scales all momenta by

√−E the operator �(E) becomes

1

4π
log

(−E

µ2

)
+ W (94)



Multi-particle Schrödinger operators with point interactions in the plane 9171

where

W = (4π)−1
∫

dp χ∗(p) log(H0 + p2/4 + 1)χ(p)

− 1

2(2π)2

∫
dp1 dp2 dp′

1 dp′
2 χ∗(p1 + p2)χ(p′

1 + p′
2)

×
(

a∗(p′
1)a

∗(p′
2)

1

H0 + ω1 + ω2 + ω′
1 + ω′

2 + 1
a(p1)a(p2)

+ δ(p1 − p′
1)a

∗(p′
2)

4

H0 + ω1 + ω2 + ω′
2 + 1

a(p2)

)
. (95)

The issue is then to study properties of W .

3.6. Extensions

We now allow an extra inter-particle potential v again assumed bounded. This means we add
a potential

V = 1

2

∫
a∗(x)a∗(y)v(x − y)a(x)a(y) dx dy. (96)

We have

|(ψ, V χ)| � 1
2‖v‖∞

∥∥N
1/2
0 (N0 − 1)1/2ψ

∥∥∥∥N
1/2
0 (N0 − 1)1/2χ

∥∥ (97)

and thus V defines an operator on HN satisfying ‖V ‖ � N2‖v‖∞/2. This is in configuration
space and we actually consider the momentum space version V ′ = �(F)V �(F−1) where
�(F) is the induced Fourier transform on Fock space. This also satisfies ‖V ′‖ � N2‖v‖∞/2
which is the only fact we use.

With a cutoff the full Hamiltonian is then

H #
� = H0 + V ′ + HI,�. (98)

Then H #
� is self-adjoint on D(H0) ∩ HN . The same is true for

H1 = H0 + V ′ (99)

and we have H1 � −N2‖v‖∞/2
Proceeding as before we introduce resolvents

R1(E) = (H1 − E)−1 R#
�(E) = (

H #
� − E

)−1
(100)

and for E < −N2‖v‖∞/2

�#
�(E) = g−1

� − B�R1(E)B∗
�. (101)

For such E we find as in lemma 5 that E is in the resolvent set of H #
� on HN if and only if

�#
�(E) has a bounded inverse on H̃N−2 in which case

R#
�(E) = R1(E) + R1(E)B∗

��#
�(E)−1B�R1(E). (102)

Theorem 4.

1. Let E < −e#
N where

e#
N = max

(
N,N2‖v‖∞,−µ2 e16πN2(C2‖v‖∞+1)

)
(103)

and where C is the constant in lemma 2. For ψ ∈ HN the limit R#(E)ψ =
lim�→∞ R#

�(E)ψ exists and is equal to

R#(E) = R1(E) + R1(E)B∗�#(E)−1BR1(E). (104)
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2. R#(E) is invertible.
3. For E complex and not in

[−e#
N,∞)

the limit R#(E)ψ = lim�→∞ R#
�(E)ψ exists. There

is a self-adjoint operator H #(µ) with H #(µ) � −e#
N so that R#(E) = (H #(µ) − E)−1.

Proof. We follow the proof of theorem 3. We have

R1(E) = R0(E) − R1(E)V ′R0(E) (105)

and hence

�#
�(E) = ��(E) + B�R0(E)V ′R0(E)B∗

� − B�R0(E)V ′R1(E)V ′R0(E)B∗
�. (106)

For � = ∞ define �#(E) by replacing ��(E) by �(E) and B� by B. Since E <

−µ2 e16πN2(C2‖v‖∞+1) we have for � sufficiently large or infinite instead of (88)

�0,�(E) � 3N2(C2‖v‖∞ + 1) (107)

and it follows by the bound on �I,�(E) that

��(E) � N2(C2‖v‖∞ + 1). (108)

For the other terms in (106) we note that E < −N implies ‖B�R0(E)‖ � C by
lemma 2. Also E < −N2‖v‖∞ and the lower bound on H1 imply that ‖R1(E)‖ �
(N2‖v‖∞/2)−1. Using also ‖V ′‖ � N2‖v‖∞/2

‖B�R0(E)V ′R0(E)B∗
�‖ � C2N2‖v‖∞/2

‖B�R0(E)V ′R1(E)V ′R0(E)B∗
�‖ � C2N2‖v‖∞/2.

(109)

Combining these we find for � � ∞
�#

�(E) � N2 (110)

so that ��(E)−1 exists. Then for � < ∞ all E < −e#
N are in the resolvent set for R#

�(E) and
(102) holds .

As before �#(E) is essentially self-adjoint on D̃ ∩ H̃N . On this domain �#(E)ψ =
lim�→∞ �#

�(E)ψ . This follows from the convergence for ��(E) and the norm convergence
of B�R0(E). Using the uniform bounds on the inverses �#

�(E)−1 converges strongly to
�#(E)−1.

Finally R#
�(E) given by (102) converges strongly to R#

�(E) given by (104). Here we use
the norm convergence of B�R1(E) to BR1(E) which can be demonstrated using the adjoint
of (105). This completes the proof of the first part and the second and third parts follow as in
theorem 3. �

4. Conclusion and discussion

We have established that the N-body Schrödinger operator with delta-function potentials
defines a self-adjoint operator, and have obtained an explicit formula for the resolvent. This
rederives known results by a new method. We have also established the self-adjointness if the
potentials have the form (delta-function) + (bounded), and have obtained an explicit formula
for the resolvent in this case. This is a new result.

This work is a contribution to the theory of non-relativistic Schrödinger operators.
However, some of the techniques are borrowed from quantum field theory. The work also
contributes to the legitimation of renormalization techniques used by physicists in quantum
field theory. Finally it is our hope that this work will contribute to further progress on
renormalization problems in quantum field theory. We are particularly thinking of Hamiltonian
formulations of Yang–Mills theory where similar problems occur.
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Appendix. Trotter–Kato theorem

In the text we use the following version of the Trotter–Kato theorem.

Theorem 5. Let � be a proper closed subset of R and let Hn be a sequence of self-adjoint
operators with resolvents Rn(E) = (Hn − E)−1 defined for all complex E /∈ �. Suppose
Rn(E) converges strongly for some E /∈ � and that the limit is invertible. Then there exists
a self-adjoint operator H with resolvents R(E) = (H − E)−1 such that Rn(E) converges
strongly to R(E) for all complex E /∈ �.

A slightly different result is proved in [9]. There � = R is allowed, but one needs
convergence at two points with ±Im E > 0. This proof can be easily adapted to prove the
quoted result.
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